Monday, June 30, 2008

Visualisation and Interaction for Modelling

Eng and Salustri (2006) outline the role of computers in aiding decision making, and explain that the human mind is the best tool for making decisions. They explain that visualisation systems must help people use the information access capabilities of computers. Eng and Salustri refer to a dimension from “tacit to articulatable” knowledge. So the research for this thesis aims to use the layered Semantic architecture described by Berners Lee et al. (2000) and discussed by McGuinness (2003) relating to this diagram :-

Layered Architecture, sourced from McGuinness (2003) and Berners-Lee (2000)


Layered Architecture, sourced from McGuinness (2003) and Berners-Lee (2000)



This improves translatation between the layers to enable human/computer translation. This approach is intended to improve interaction rather than enable computing decision making through artificial intelligence; the emphasis is on decision support for design and manufacture. The detail of this approach and the methodology for automating translation for users is explained in here - http://www.cems.uwe.ac.uk/~phale/#ResearchMethodology. Such techniques as genetic algorithms are outside the scope of this thesis. Instead the emphasis is on clear visualisation, interaction and translation.

This translation code reproduces a taxonomy/ontology and makes it available for modelling/programming systems. This taxonomy/ontology is a copied subset of the main ontology produced as an instance of the main ontology according to model builder choices and for the modelling/programming purposes of that model builder.

Recursive Translation - Automated Copying from ontology to modelling system

Recursive Translation - Automated Copying from ontology to modelling system

Also the translation can link different ontologies/taxonomies together when they are required in order to solve a problem. So the approach is to gather information from ontologies/taxonomies as required for solving a problem as specified by the model builder. This is tested and applied to engineering modelling. An open source approach can be combined with use of open standards ontologies as was advocated by Cheung (2005).

References

Berners-Lee, T., (2000) Semantic Web on XML – Slide 10 [online]. Available from: http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html [Accessed 26 June 2008].

Cheung, W. M., Maropoulos, P. G., Gao, J. X., Aziz, H., 2005. Ontological Approach for Organisational Knowledge Re-use in Product Developing Environments. In: 11th International Conference on Concurrent Enterprising - ICE 2005, University BW Munich, Germany.

Eng, N., Salustri, F. A., 2006. "Rugplot" Visualization for Preliminary Design. In: CDEN 2006 3rd CDEN/RCCI International Design Conference University of Toronto, Ontario, Canada.

McGuinness D. L., 2003. Ontologies Come of Age. In: Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster, ed. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press, 2003 [online]. Available from: http://www-ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-citation).htm [Accessed 26 June 2008].

Monday, June 16, 2008

User Driven Modelling - Intermediate Benefits

Although User Driven Modelling/Programming is a difficult problem and only partially solved, there are numerous intermediate benefits from the search for this approach. These include better modelling and visualisation of problems, improved interaction with end-users, Semantic Web modelling search and visualisation methods, collaboration to improve modelling, and ways to agree ontology and Semantic Web representations. It was necessary to provide such intermediate benefits as the industrial collaborators had shorter term goals and so required deliverables.

The techniques used helped with progress towards improved interoperability that can aid in all the above areas. These uses and improved interoperability to support them needed to be developed together in an iterative way.

Experienced programmers/software engineers may have many of the problems of end-user programmers whenever they need to use a language/system they are unfamiliar with, or when the language/system they use is updated to a new version. So this means the techniques and approach developed can aid experienced software developers in such circumstances, as well as end-user programmers.

Friday, June 06, 2008

Research Development

It is important to enable changes to the design of the information source and its structure as necessary, even when it contains information. This makes possible continuous improvement of the information and its representation together. Clear visualisation of the structure makes out of date and duplicate information obvious, so it can be changed by the end-users of the information. This provides for maintenance of information quality without necessitating end-users to understand relational database design; though relational databases can still be used for information where the frequency of structural change is less.

The diagrams below shows the way iterative development is used both in this research and in the implementation to ensure that changes can be made systematically as necessary and without disrupting the project.


PhD Research Development Diagram - Research and Development for Thesis.


Research and Development for Thesis

Information about my Research is at - http://www.cems.uwe.ac.uk/~phale/.